News section

home  |  news  |  solutions  |  forum  |  careers  |  calendar  |  yellow pages  |  advertise  |  contacts

 

Wie infiziert der Maisbeulenbrand seinen Wirt? Entschlüsselung des Genoms von Ustilago maydis liefert neue Erkenntnisse
Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis
Neuherberg, Germany
November 2, 2006

Eine internationale Arbeitsgruppe unter Beteiligung des Instituts für Bioinformatik (IBI) am GSF – Forschungszentrum für Umwelt und Gesundheit konnte Details zum Infektionsmechanismus des Maisbeulenbrandpilzes aufklären. Die Entdeckung von Gruppen benachbarter Gene und der Beweis ihrer Funktion im Infektionsprozess spielen eine entscheidende Rolle beim Verständnis der Pathogenität des Pilzes.

„Diese Untersuchung ist ein überzeugendes Beispiel, in dem die Genomanalyse neue Wege eröffnet hat, um die Mechanismen der Virulenz pathogener Organismen entschlüsseln zu können“, betont Prof. Dr. Hans-Werner Mewes, Direktor des GSF-Instituts für Bioinformatik.

Ustilago maydis, so der wissenschaftliche Name des weltweit verbreiteten Brandpilzes, befällt Maispflanzen. Makroskopisch sind infizierte Pflanzen durch die vom Pilz induzierten tumorartigen Wucherungen gut zu erkennen. In der nun in Nature publizierten Arbeit wird das Genom dieses Pflanzenschädlings beschrieben. Es besteht aus 20,5 Megabasen und enthält etwa 6900 Protein-codierende Gene.

Interessanterweise konnten jedoch nur wenige aus anderen Genomen bekannte Pathogen-Merkmale, etwa Gene, die für Pflanzenzellwand abbauende Enzyme codieren, gefunden werden. Dies lässt sich damit in Einklang bringen, dass U. maydis die Pflanzenzellen des Wirtes nicht abtötet (biotrophe Interaktion).

„Der Beitrag des IBI zur Bioinformatik der Genomanalyse bestand in der Hauptsache aus der Verbesserung der automatisch generierten Genstruktur sowie der computerunterstützten Funktionsanalyse des Organismus und in der Einrichtung und Bereitstellung einer öffentlich zugänglichen Datenbank“, betont Dr. Gertrud Mannhaupt, die die Arbeiten durchgeführt hat. Ohne eine systematische Genomanalyse wären Interpretationen der genomischen Information und die Identifikation zentraler neuer Gene für die Pathogenität nicht möglich gewesen.

Koordiniert wurden die Arbeiten von Prof. Jörg Kämper vom Max-Planck-Institut für Terrestrische Mikrobiologie in Marburg, dessen Gruppe auch die Untersuchung der pilzlichen Genexpressionsprofile im Tumormaterial beisteuerte. Die Arbeitsgruppe von Prof. Dr. Regine Kahmann vom Max-Planck-Institut für Terrestrische Mikrobiologie in Marburg entdeckte im Erbgut unerwartete Eigenschaften, die für die Pathogenität dieses Organismus verantwortlich sind. Es konnten zwölf spezifische Gruppen von benachbarten Genen (Clustern) identifiziert werden, die für kleine Proteine mit bisher unbekannten Funktionen codieren. Diese Proteine werden vom Pilz nach außen abgesondert (sekretiert). Außerdem konnte durch Expressionsanalysen gezeigt werden, dass im Tumormaterial die meisten Gene dieser Cluster aktiv sind.

Da sich Ustilago maydis relativ einfach kultivieren und revers-genetisch verändern lässt, konnte untersucht werden, ob diese Gencluster wichtig für die pathogene Entwicklung sind. Erstaunlicherweise zeigte sich, dass die Entfernung dieser Cluster in fünf Fällen zu einer veränderten Virulenz von U. maydis führt. Dabei reichte das Spektrum von komplettem Verlust bis hin zu einer Erhöhung der Virulenz an der Wirtspflanze.

Trotz jahrelanger Forschung zur Aufklärung des Mechanismus der Pathogenität von U. maydis konnte man bis dato keine „echten“ Virulenzfaktoren identifizieren, d.h. pilzliche Faktoren, die ausschließlich eine Rolle in der Interaktion mit der Pflanze besitzen.

SOURCE

Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis
Jörg Kämper, Regine Kahmann, Michael Bölker, Li-Jun Ma, Thomas Brefort, Barry J. Saville, Flora Banuett, James W. Kronstad, Scott E. Gold, Olaf Müller, Michael H. Perlin, Han A. B. Wösten, Ronald de Vries, José Ruiz-Herrera, Cristina G. Reynaga-Peña, Karen Snetselaar, Michael McCann, José Pérez-Martín, Michael Feldbrügge, Christoph W. Basse, Gero Steinberg, Jose I. Ibeas, William Holloman, Plinio Guzman, Mark Farman, Jason E. Stajich, Rafael Sentandreu, Juan M. González-Prieto, John C. Kennell, Lazaro Molina, Jan Schirawski, Artemio Mendoza-Mendoza, Doris Greilinger, Karin Münch, Nicole Rössel, Mario Scherer, Miroslav Vrane, Oliver Ladendorf, Volker Vincon, Uta Fuchs, Björn Sandrock, Shaowu Meng, Eric C. H. Ho, Matt J. Cahill, Kylie J. Boyce, Jana Klose, Steven J. Klosterman, Heine J. Deelstra, Lucila Ortiz-Castellanos, Weixi Li, Patricia Sanchez-Alonso, Peter H. Schreier, Isolde Häuser-Hahn, Martin Vaupel, Edda Koopmann, Gabi Friedrich, Hartmut Voss, Thomas Schlüter, Jonathan Margolis, Darren Platt, Candace Swimmer, Andreas Gnirke, Feng Chen, Valentina Vysotskaia, Gertrud Mannhaupt, Ulrich Güldener, Martin Münsterkötter, Dirk Haase, Matthias Oesterheld, Hans-Werner Mewes, Evan W. Mauceli, David DeCaprio, Claire M. Wade, Jonathan Butler, Sarah Young, David B. Jaffe, Sarah Calvo, Chad Nusbaum, James Galagan and Bruce W. Birren
Nature, 2. November 2006

EDITOR'S SUMMARY

Genome of a maize pathogen

Ustilago maydis is an important fungal pathogen of maize, causing corn smut. It is well adapted to its host and proliferates in living plant tissue without inducing a defence response. The genome sequence of U. maydis has now been determined, the first for a biotrophic plant parasite. Several gene clusters that encode secreted proteins of unknown function were identified: genome-wide expression analysis shows that the clustered genes are upregulated during disease. Mutations in these gene clusters frequently affect virulence, ranging from complete loss of pathogenicity to hypervirulence.

News release

Other news from this source

17,421

Back to main news page

The news release or news item on this page is copyright © 2006 by the organization where it originated.
The content of the SeedQuest website is copyright © 1992-2006 by SeedQuest - All rights reserved
Fair Use Notice