home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Plant Protector: How plants strengthen their light-harvesting membranes against environmental stress
Pflanzenschutzmittel von innen: Wie Pflanzen ihre lichtsammelnden Membranen gegen Umweltstress stärken


Germany
June 23, 2021

An international study led by Helmholtz Zentrum München has revealed the structure of a membrane-remodeling protein that builds and maintains photosynthetic membranes. These fundamental insights lay the groundwork for bioengineering efforts to strengthen plants against environmental stress, helping to sustaining human food supply and fight against climate change.
 


Artistic rendering of the VIPP1 ring structure covered in lush plant life, representing the central role of VIPP1 in constructing and maintaining the photosynthetic thylakoid membranes that enable plants to grow. This study is featured on the cover of Cell (July 8). Image credit: Verena Resch. © Helmholtz Zentrum München / Ben Engel
 

Plants, algae, and cyanobacteria perform photosynthesis, using the energy of sunlight to produce the oxygen and biochemical energy that power most life on Earth. They also adsorb carbon dioxide (CO₂) from the atmosphere, counteracting the accumulation of this greenhouse gas. However, climate change is exposing photosynthetic organisms to increasing environmental stress, which inhibits their growth, and in the long term, endangers the food supply of humankind.

The important first steps of photosynthesis are performed within the thylakoid membranes, which contain protein complexes that harvest sunlight. For decades, it has been known that the protein VIPP1 (vesicle-inducing protein in plastids) is critical for forming thylakoid membranes in almost all photosynthetic organisms – from plants on land to algae and cyanobacteria in the ocean.  However, it has remained a mystery how VIPP1 performs this essential function. In the latest issue of the journal Cell, a new study by an international consortium of researchers led by Ben Engel from the Helmholtz Pioneer Campus at Helmholtz Zentrum München reveals the structure and mechanism of VIPP1 with molecular detail.

Building and protecting photosynthetic membranes

The researchers used cryo-electron microscopy to generate the first high-resolution structure of VIPP1. Combining this structural analysis with functional assays revealed how VIPP1 assembles into an interwoven membrane coat that shapes the thylakoid membranes. The research group also used the cutting-edge approach of cryo-electron tomography to image VIPP1 coats within the native environment of algae cells. By using the structural information to make specific mutations to VIPP1, the researchers observed that the interaction of VIPP1 with thylakoid membranes is critical to maintain the structural integrity of these membranes under high-light stress. “Our study shows how VIPP1 plays a central role in both thylakoid biogenesis and adaptation of thylakoids to environmental changes,” explains first author Tilak Kumar Gupta from the Max Planck Institute of Biochemistry.

This study lays the foundation for a mechanistic understanding of thylakoid biogenesis and maintenance. It also provides new opportunities for engineering plants that are more resistant to extreme environmental conditions. “Insights into the molecular mechanisms controlling thylakoid remodeling are an important step towards developing crops that not only grow faster, have higher yield and resistance to environmental stress, but also absorb more atmospheric CO₂ to counteract climate change,” says study leader Ben Engel.

International team research

This interdisciplinary study brought together the talents of research teams from the Technische Universität Kaiserslautern (Michael Schroda), Philipps-Universität Marburg (Jan Schuller), Ludwig-Maximilians-Universität München (Jörg Nickelsen), Okayama University in Japan (Wataru Sakamoto), McGill University in Canada (Mike Strauss), Ruhr-Universität Bochum (Till Rudack), the Max Planck Institute of Biochemistry (Wolfgang Baumeister and Jürgen Plitzko) and Helmholtz Zentrum München. “Our study covers a lot of new ground using a wide variety of techniques. This was only possible thanks to the tremendous collective efforts of the researchers in our international consortium,” says Ben Engel.

Original publication

Gupta et al., 2021: Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity. Cell, DOI: https://doi.org/10.1016/j.cell.2021.05.011


 

Pflanzenschutzmittel von innen: Wie Pflanzen ihre lichtsammelnden Membranen gegen Umweltstress stärken

Eine internationale Studie unter Leitung des Helmholtz Zentrums München hat die Struktur eines Proteins aufgeklärt, das photosynthetische Membranen aufbaut und aufrechterhält. Diese Erkenntnisse legen den Grundstein für biotechnologische Anstrengungen um Pflanzen gegen Umweltstress zu stärken und so die menschliche Nahrungsversorgung zu sichern und den Klimawandel zu bekämpfen.

Pflanzen, Algen und Cyanobakterien betreiben Photosynthese und nutzen die Energie des Sonnenlichts, um Sauerstoff und biochemische Energie zu produzieren, die den Großteil des Lebens auf der Erde antreiben. Außerdem nehmen sie Kohlendioxid (CO2) aus der Atmosphäre auf und wirken so der Anreicherung dieses Treibhausgases entgegen. Durch den Klimawandel sind photosynthetische Organismen jedoch einem zunehmenden Umweltstress ausgesetzt, der ihr Wachstum hemmt und langfristig die Ernährung der Menschheit gefährdet.

Die wichtigen ersten Schritte der Photosynthese finden innerhalb der Thylakoidmembranen statt. Diese enthalten Proteinkomplexe, die das Sonnenlicht einfangen. Seit Jahrzehnten ist bekannt, dass das Protein VIPP1 (vesicle-inducing protein in plastids) bei fast allen photosynthetischen Organismen – von Pflanzen an Land bis zu Algen und Cyanobakterien im Meer – entscheidend ist für die Bildung der Thylakoidmembranen. Bisher war es jedoch ein Rätsel, wie VIPP1 diese essentielle Funktion ausführt. In der aktuellen Ausgabe der Zeitschrift Cell hat eine neue Studie einer internationalen Forschungsgruppe unter der Leitung von Ben Engel am Helmholtz Pioneer Campus des Helmholtz Zentrums München die Struktur und den Mechanismus von VIPP1 auf molekularer Ebene enthüllt.

Aufbau und Schutz photosynthetischer Membranen
Mit Hilfe von Kryo-Elektronenmikroskopie erstellten die Forschenden eine erste hochaufgelöste Struktur von VIPP1. Die Kombination dieser Strukturanalyse mit weiteren funktionellen Untersuchungen zeigte, wie sich VIPP1 zu einer verwobenen Membranhülle zusammensetzt, welche die Thylakoidmembranen formt. Die Forschungsgruppe nutzte auch den hochmodernen Ansatz der Kryo-Elektronentomographie, um VIPP1-Membranen in der nativen Umgebung von Algenzellen abzubilden. Indem sie spezifische Mutationen an VIPP1 vornahmen, beobachteten die Forschenden, dass die Interaktion von VIPP1 mit Thylakoidmembranen entscheidend ist, um die strukturelle Integrität dieser Membranen unter hohem Lichtstress aufrechtzuerhalten. „Unsere Studie zeigt, dass VIPP1 eine zentrale Rolle sowohl bei der Entstehung der Thylakoide als auch bei ihrer Anpassung an Umweltveränderungen spielt“, erklärt Erstautor Tilak Kumar Gupta vom Max-Planck-Institut für Biochemie.

Diese Studie legt den Grundstein für ein besseres mechanistisches Verständnis darüber, wie sich Thylakoide bilden und aufrechterhalten. Sie bietet auch neue Möglichkeiten für die Stärkung von Pflanzen, die widerstandsfähiger gegen extreme Umweltbedingungen sind. „Die Erkenntnisse über die molekularen Mechanismen, die den Thylakoid-Umbau steuern, sind ein wichtiger Schritt auf dem Weg zur Entwicklung von Nutzpflanzen, die nicht nur schneller wachsen, einen höheren Ertrag und eine höhere Resistenz gegen Umweltstress aufweisen, sondern auch mehr atmosphärisches CO2 binden, um dem Klimawandel entgegenzuwirken“, erklärt Ben Engel.

Gemeinsame internationale Forschung
Diese interdisziplinäre Studie brachte Köpfe verschiedener Forschungseinrichtungen zusammen: der Technischen Universität Kaiserslautern (Michael Schroda), der Philipps-Universität Marburg (Jan Schuller), der Ludwig-Maximilians-Universität München (Jörg Nickelsen), der Okayama University in Japan (Wataru Sakamoto), der McGill University in Kanada (Mike Strauss), der Ruhr-Universität Bochum (Till Rudack), des Max-Planck-Instituts für Biochemie (Wolfgang Baumeister und Jürgen Plitzko) und des Helmholtz Zentrums München. „Unsere Studie erschließt viele neue Wege und nutzt eine Vielzahl von Techniken. Das war nur dank der enormen gemeinsamen Anstrengungen der Forschenden in unserem internationalen Konsortium möglich“, sagt Ben Engel.

Helmholtz Zentrum München
Das Helmholtz Zentrum München verfolgt als Forschungszentrum die Mission, personalisierte medizinische Lösungen zur Prävention und Therapie umweltbedingter Krankheiten für eine gesündere Gesellschaft in einer sich schnell verändernden Welt zu entwickeln. Es erforscht das Entstehen von Volkskrankheiten im Kontext von Umweltfaktoren, Lebensstil und individueller genetischer Disposition. Besonderen Fokus legt das Zentrum auf die Erforschung des Diabetes mellitus, Allergien und chronischer Lungenerkrankungen. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.500 Mitarbeitende und ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands mit mehr als 43.000 Mitarbeitenden in 18 Forschungszentren.


Originalpublikation:

Gupta et al., 2021: Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity. Cell, DOI: https://doi.org/10.1016/j.cell.2021.05.011

 



More news from: Helmholtz Center for Environmental Research


Website: http://www.ufz.de

Published: June 24, 2021

The news item on this page is copyright by the organization where it originated
Fair use notice

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Archive of the news section


Copyright @ 1992-2024 SeedQuest - All rights reserved